# Quadrilaterals

# Multiple Choice Questions (MCQs)

How many angles are there in a quadrilat-1. eral?

(d) 3 (a) 4 (b) 2 (c) 1

2. The three consecutive angles of a quadrilateral are  $70^{\circ}$ ,  $120^{\circ}$  and  $50^{\circ}$ . The fourth angle of the quadrilateral is

(a) 45° (b) 60° (c)  $120^{\circ}$ (d) 30°

If the sum of angles of a triangle is X and 3. the sum of the angles of a quadrilateral is Y, then

(a) X = 2Y(b) 2X = Y(c) X = Y

(d)  $X + Y = 360^{\circ}$ 

One of the angles of a quadrilateral is 90° 4. and the remaining three angles are in the ratio 2:3:4. Find the largest angle of the quadrilateral. (a) 120° (b) 90° (c)  $140^{\circ}$ (d) 100° 5. In the figure, *ABCD* is a quadrilateral whose sides AB, BC, CD and DA are produced  $R^{\bullet}$ in order to P, Q, R and S. Then x + y + z + t is equal to ิด (a) 180° (b) 360° (c)  $380^{\circ}$ (d) 270°

If only one pair of opposite sides of a 6. quadrilateral are parallel, then the quadrilateral is a

- (a) Parallelogram (b) Trapezium
- Rhombus (d) Rectangle (c)
- A blackboard is in the shape of a 7.
- (b) Rhombus (a) Parallelogram
- Rectangle (d) Kite (c)

8. The angle between the diagonals of a rhombus is

 $45^{\circ}$ (b) 90° (c) 30° (d) 60° (a)

A quadrilateral whose all the four sides and 9. all the four angles are equal is called a

- (a) Rectangle (b) Rhombus
- Square (d) Parallelogram (c)
- **10.** Which of the following is not true?
- The diagonals of a rectangle are equal. (a)
- (b) Diagonals of a square are equal.

- (c) Diagonals of a parallelogram are not always equal.
- (d) Diagonals of a kite are equal.

11. In the adjoining figure, ABCD is a square. A line segment DX cuts the side BCat X and the diagonal AC at *O* such that  $\angle COD = 105^{\circ}$  and  $\angle OXC = x$ . Find the value of *x*. (a) 75° (b) 80° (c) 60°



(d) 45°

**12.** If angles *A*, *B*, *C* and *D* of the quadrilateral ABCD, taken in order, are in the ratio 3:7:6:4, then ABCD is a

- (b) parallelogram (a) rhombus
- trapezium (d) kite (c)

**13.** In a parallelogram *ABCD*, if  $\angle A = 75^{\circ}$ , then the measure of  $\angle B$  is

10° (b) 20° (c)  $105^{\circ}$ (d) 90° (a)

**14.** In parallelogram *ABCD*,  $\angle DAB = 70^{\circ}$ ,  $\angle DBC$ = 70°, then  $\angle CDB$  is equal to

- $40^{\circ}$ (a)
- (b) 60°
- $70^{\circ}$ (c)
- (d)  $30^{\circ}$

**15.** In the given figure, *ABCD* is a parallelogram. E and Fare points on opposite sides

AD and BC respectively, such



70°

лD

that  $ED = \frac{1}{2}AD$  and  $BF = \frac{1}{3}BC$ . If  $\angle ADF = 60^\circ$ ,

then find  $\angle BFD$ .

(a) 120° (b) 130° (c)  $125^{\circ}$ (d) 115°

16. Two angles of a quadrilateral are  $55^{\circ}$  and  $65^{\circ}$ . The other two angles are in the ratio 3:5. The two angles are

- (a) 100°, 110° (b) 85°, 125°
- (c)  $100^{\circ}, 120^{\circ}$ (d) 90°, 150°

17. In a quadrilateral ABCD, diagonals bisect each other at right angle. Also, AB = BC = AD= 5 cm, then find the length of CD.

(a) 5 cm (b) 4 cm (c) 2 cm(d) 6 cm



18. In the given figure, ABCD is a parallelogram, what is the sum of the angles x, y and z? (d) 90° (a) 180° (b) 45° (c) 60° 19. If a pair of opposite sides of a quadrilateral is equal and parallel, then the quadrilateral is a (a) parallelogram (b) rectangle rhombus (d) square (c) **20.** In  $\triangle ABC$ ,  $EF \parallel BC$ , F is the mid-

point of AC and AE = 3.5 cm. Then

AB is equal to

- (a) 7 cm
- (b) 5 cm
- (c) 5.5 cm
- (d) 4.5 cm

21. The triangle formed by joining the midpoints of the sides of an equilateral triangle is

8 cm

- (a) scalene (b) right angled
- (c) equilateral (d) isosceles

22. The four triangles formed by joining the mid-points of the sides of a triangle are

- (a) congruent to each other
- (b) non- congruent to each other
- always right angled triangle (c)
- can't be determined (d)

**23.** If *M* and *N* are the mid-points of non parallel sides of a trapezium PQRS, then which of the following conditions is/are true?

(a)  $MN \parallel PQ$ 

(b) 
$$MN = \frac{1}{2} (PQ + RS)$$
  
(c)  $MN = \frac{1}{2} (PQ - RS)$ 

(d) Both (a) and(b)

**24.** In the given figure, *ABCD* is a rhombus. If  $\angle A = 70^{\circ}$ , then  $\angle CDB$  is equal to

- (a) 65°
- (b) 55°
- $75^{\circ}$ (c)
- (d) 80°

**25.** Two adjacent angles of a parallelogram are  $(2x + 25)^{\circ}$  and  $(3x - 5)^{\circ}$ . The value of x is (a) 28 (b) 32 (c) 36 (d) 42

**26.** In a quadrilateral *STAR*, if  $\angle S = 120^\circ$ , and  $\angle T : \angle A : \angle R = 5 : 3 : 7$ , then measure of  $\angle R =$ 

- (a) 112° (b) 120°
- (c)  $110^{\circ}$ (d) None of these

**27.** In figure, *ABCD* is a trapezium. Find the values of x and y.

(a)  $x = 50^{\circ}, y = 80^{\circ}$  $+ 20)^{\circ}$ 

 $2x+10)^{\circ}$  92

- (b)  $x = 50^{\circ}, y = 88^{\circ}$
- $x = 80^{\circ}, y = 50^{\circ}$ (c)
- (d) None of these

**28.** In a quadrilateral *ABCD*,  $\angle A + \angle C$  is 2 times  $\angle B + \angle D$ . If  $\angle A = 140^{\circ}$  and  $\angle D = 60^{\circ}$ , then  $\angle B =$ 

- (a) 60° (b) 80°
- (c)  $120^{\circ}$ (d) None of these

29. The measure of all the angles of a parallelogram, if an angle is 24 less than twice the smallest angle, is

- 37°, 143°, 37°, 143° (a)
- 108°, 72°, 108°, 72° (b)
- 68°, 112°, 68°, 112° (c)
- (d) None of these

**30.** Which type of quadrilateral is formed when the angles A, B, C and D are in the ratio 2: 4: 5: 7?

- (a) Rhombus (b) Square
- Trapezium (d) Rectangle (c)

**31.** In  $\triangle PQR$ , A and B are respectively the midpoints of sides *PQ* and *PR*. If  $\angle PAB = 60^{\circ}$ , then  $\angle PQR =$ 

(a) 40° (b) 80° (c) 60° (d) 70°

**32.** Sides *AB* and *CD* of a quadrilateral *ABCD* are extended as in figure. Then a + b is equal to

(a) x + 2y(b) x - y

(c) 
$$x + y$$
  $A = B$ 

(d) 2x + y

**33.** In the adjoining figure, *PQRS* is a parallelogram in which PQ is produced to *T* such that QT = PQ. Then, OQ is equal to

- (a) **OS** (b) *OR* (c) *OT* 
  - (d) None of these

34. If consecutive sides of a parallelogram are equal, then it is necessarily a

- (a) Rectangle (b) Rhombus
- Trapezium (d) None of these (c)

35. The triangle formed by joining the midpoints of the sides of a right angled triangle is

- (a) scalene (b) isosceles
- equilateral (c)
- (d) right angled

Get More Learning Materials Here :

**CLICK HERE** 



### Case Based MCQs

**Case I.** Read the following passage and answer the questions from 36 to 40.

Laveena's class teacher gave students some colourful papers in the shape of quadrilaterals. She asked students to make a parallelogram from it using paper folding. Laveena made the following parallelogram.



**36.** How can a parallelogram be formed by using paper folding?

- (a) Joining the sides of quadrilateral
- (b) Joining the mid-points of sides of quadrilateral
- Joining the various quadrilaterals (c)
- (d) None of these
- **37.** Which of the following is true?

(a) 
$$PQ = BD$$
 (b)  $PQ = \frac{1}{2}BD$ 

(c) 
$$3PQ = BD$$
 (d)  $PQ = 2BD$ 

**38.** Which of the following is correct combination?

(b)  $RS = \frac{1}{3}BD$ (a) 2RS = BD

- (c) RS = BD(d) RS = 2BD
- 39. Which of the following is correct?
- (a) SR = 2PQ(b) PQ = SR

(c) 
$$SR = 3PQ$$
 (d)  $SR = 4PQ$ 

**40.** Write the formula used to find the perimeter of quadrilateral PQRS.

- (a) PQ + QR + RS + SP
- (b) PQ QR + RS SP

(c) 
$$\frac{PQ+QR+RS+SP}{2}$$

(d) 
$$\frac{PQ+QR+RS+SP}{3}$$

Case II. Read the following passage and answer the questions from 41 to 45.

After summervacation, Manit's class teacher organised a  $_A$ small MCQ quiz, based on the properties of quadrilaterals.

During quiz, she asks different questions to students.

Some of the questions are listed below.

**41.** Which of the following is/are the condition(s)

- for *ABCD* to be a quadrilateral?
- The four points A, B, C and D must be (a)distinct and co-planar.
- (b) No three of points A, B, C and D are collinear.
- Line segments *i.e.*, AB, BC, CD, DA intersect (c) at their end points only.
- (d) All of these
- 42. Which of the following is wrong condition
- for a quadrilateral said to be a parallelogram?
- Opposite sides are equal (a)
- (b) Opposite angles are equal
- Diagonal can't bisect each other (c)
- (d) None of these

**43.** If *AX* and *CY* are the bisectors of the angles A and C of a parallelogram ABCD, then

- (a)  $AX \parallel CY$
- (b) *AX* || *CD*
- $AX \parallel AB$ (c)
- (d) None of these



If  $\angle C = 63^\circ$ , then determine  $\angle G$ .

- 63° (a)  $117^{\circ}$ (b) 90°
- (c) (d) 120°

45. If angles of a quadrilateral are in ratio

- 3:5:5:7, then find all the angles.
- (a) 54°, 80°, 80°, 146° (b) 34°, 100°, 100°, 126°
- (c)  $54^{\circ}$ ,  $90^{\circ}$ ,  $90^{\circ}$ ,  $126^{\circ}$  (d) None of these

**Case III.** Read the following passage and answer the questions from 46 to 50.

Anjali and Meena were trying to prove mid point theorem.

They draw a triangle ABC, where D and E are found to be the midpoints of AB and ACrespectively. DE was joined and extended to F such that DE = EF and FC is also joined.



В

E

**46.**  $\triangle ADE$  and  $\triangle CFE$  are congruent by which criterion?

(d) ASA (a) SSS (b) SAS (c) RHS





**47.**  $\angle EFC$  is equal to which angle? **49.** *CF* is equal to EC(b) *BE* (c) *BC* (d) *AD* (a)  $\angle DAE$  (b)  $\angle EDA$  (c)  $\angle AED$  (d)  $\angle DBC$ (a)**48.**  $\angle ECF$  is equal to which angle? **50.** *CF* is parallel to (d) AC (a)  $\angle EAD$  (b)  $\angle ADE$  (c)  $\angle AED$  (d)  $\angle B$ (a) AE(b) *CE* (c) *BD* 

# Assertion & Reasoning Based MCQs

Directions (Q.51 to 55) : In these questions, a statement of Assertion is followed by a statement of Reason is given. Choose the correct answer out of the following choices :

- (a) Assertion and Reason both are correct statements and Reason is the correct explanation of Assertion.
- Assertion and Reason both are correct statements but Reason is not the correct explanation of Assertion. (b)
- Assertion is correct statement but Reason is wrong statement. (c)
- (d) Assertion is wrong statement but Reason is correct statement.

**51.** Assertion : In  $\triangle ABC$ , median AD is produced to *X* such that AD = DX. Then ABXCis a parallelogram.

Reason : Diagonals of a parallelogram are perpendicular to each other.

52. Assertion : ABCD and PQRC are rectangles and Q is the mid-point of AC. Then DP = PC.



Reason : The line segment joining the midpoints of any two sides of a triangle is parallel to the third side and equal to half of it.

53. Assertion : Two opposite angles of a parallelogram are  $(3x - 2)^{\circ}$  and  $(50 - x)^{\circ}$ . The measure of one of the angle is 37°.

**Reason**: Opposite angles of a parallelogram are equal.

**54.** Assertion : *ABCD* is a square. *AC* and *BD* intersect at *O*. The measure of  $\angle AOB = 90^{\circ}$ .

Reason : Diagonals of a square bisect each other at right angles.

**55.** Assertion : In  $\triangle ABC$ , E and F are the midpoints of AC and AB respectively. The altitude AP at BC intersects FE at Q. Then, AQ = QP.

**Reason :** If Q is the midpoint of AP, then AQ = QP.

### SUBJECTIVE TYPE QUESTIONS

7.

# Very Short Answer Type Questions (VSA)

1. Two consecutive angles of a parallelogram are  $(x + 60^\circ)$  and  $(2x + 30^\circ)$ . What special name can you give to this parallelogram?

2. In the given figure, PQRS is a parallelogram in which  $\angle PSR = 125^{\circ}$ . Find the measure of  $\angle RQT$ .



Can the angles  $110^{\circ}$ ,  $80^{\circ}$ ,  $70^{\circ}$  and  $95^{\circ}$  be the 3. angles of a quadrilateral? Why or why not?

4. In the figure, it is given that QLMN and NLRM are parallelograms. Can you say that QL = LR? Why or why not?



ABCD is a parallelogram in which  $\angle A = 78^{\circ}$ . **5**. Compute  $\angle B$ ,  $\angle C$  and  $\angle D$ .

**6**. In the given figure, ABCD is a parallelogram in which  $\angle DAB = 60^{\circ}$ and  $\angle DBC = 55^{\circ}$ . Compute  $\angle CDB$  and  $\angle ADB.$ 



In the given figure, AB = ACand  $CP \parallel BA$  and AP is the bisector of exterior  $\angle CAD$ of  $\triangle ABC$ . Prove that  $\angle PAC = \angle BCA$  and ABCP is a parallelogram.



8. If one angle of a rhombus is a right angle, then it is necessarily a \_\_\_\_\_.

**9.** In a rhombus *ABCD*, if  $\angle A = 60^{\circ}$ , then find the sum of  $\angle A$  and  $\angle C$ .

### Short Answer Type Questions (SA-I)

**11.** In a quadrilateral *ABCD*, *CO* and *DO* are the bisectors of  $\angle C$  and  $\angle D$  respectively.

Prove that  $\angle COD = \frac{1}{2}(\angle A + \angle B).$ 

**12.** In the given parallelogram A BCD, the sum of any two consecutive angles is  $180^{\circ}$  and pposite angles are equal. Find B B the value of  $\angle A$ .



**13.** Diagonals of a quadrilateral *ABCD* bisect each other.  $\angle A = 45^{\circ}$  and  $\angle B = 135^{\circ}$ . Is it true? Justify your answer.

14. *D* and *E* are the mid-points of sides *AB* and *AC* respectively of triangle *ABC*. If the perimeter of  $\triangle ABC = 35$  cm, then find the perimeter of  $\triangle ADE$ .

**15.** In  $\triangle ABC$ , AD is the median and  $DE \parallel AB$ , such that E is a point on AC. Prove that BE is another median.

**10.** *ABCD* is a trapezium in which  $AB \parallel DC$  and  $\angle A = \angle B = 45^{\circ}$ . Find angles *C* and *D* of the trapezium.

16. In the given figure, M, Nand P are the midpoints of AB, AC and BC respectively. If MN = 3 cm, NP = 3.5 cm and MP = 2.5 cm, then find (BC + AC) - AB.



**17.** Let  $\triangle ABC$  be an isosceles triangle with AB = AC and let D, E and F be the mid-points of BC, CA and AB respectively. Show that  $AD \perp FE$  and AD is bisected by FE.

**18.** In the given rectangle *ABCD*,  $\angle ABE = 30^{\circ}$  and  $\angle CFE = 144^{\circ}$ . Find the measure of  $\angle BEF$ .



**19.** The perimeter of a parallelogram is 30 cm. If longer side is 9.5 cm, then find the length of shorter side.

**20.** In a parallelogram *ABCD*, if  $\angle A = (3x - 20)^\circ$ ,  $\angle B = (y + 15)^\circ$  and  $\angle C = (x + 40)^\circ$ , then find x + y (in degrees).

### Short Answer Type Questions (SA-II)

**21.** In a parallelogram *PQRS*, if  $\angle QRS = 2x$ ,  $\angle PQS = 4x$  and  $\angle PSQ = 4x$ , then find the angles of the parallelogram.

**22.** l, m and n are three parallel lines intersected by transversals p and q such that l, m and n cut off equal intercepts AB and BC on p (see figure).



Show that l, m and n cut off equal intercepts DE and EF on q also.

**23.** The side of a rhombus is 10 cm. The smaller diagonal is  $\frac{1}{3}$  of the greater diagonal. Find the length of the greater diagonal.

**24.** In  $\triangle ABC$ ,  $\angle A = 50^{\circ}$ ,  $\angle B = 60^{\circ}$  and  $\angle C = 70^{\circ}$ . Find the measures of the angles of the triangle formed by joining the mid-points of the sides of this triangle.

**25.** In given figure, *ABCD* is a parallelogram in which *P* is the midpoint of *DC* and *Q* is a point on *AC* such that  $CQ = \frac{1}{4}AC$ . If *PQ* produced *A* 

**CLICK HERE** 



🕀 www.studentbro.in

meet BC at R, then prove that R is a midpoint of BC.

**26.** ABCD is parallelogram. *P* is a point on *AD* such that  $AP = \frac{1}{3}AD$  and *Q* is a point on *BC* such that  $CQ = \frac{1}{3}BC$ . Prove that AQCP is a parallelogram.

**27.** PQRS is a parallelogram and  $\angle SPQ = 60^{\circ}$ . If the bisectors of  $\angle P$  and  $\angle Q$  meet at point A on RS, prove that A is the mid-point of RS.



**28.** In the given figure, K is the mid-point of side SR of a parallelogram PQRS such that  $\angle SPK = \angle QPK$ . Prove that PQ = 2QR.



**29.** Rima has a photo-frame without a photo in the shape of a triangle with sides a, b, c in length. She wants to find the perimeter of a triangle formed by joining the mid-points of the sides of the photo-frame. Find the perimeter of the triangle formed by joining the mid-points of the frame.

**30.** In the following figure, AL and CM are medians of  $\triangle ABC$  and  $LN \parallel CM$ . Prove that

 $BN = \frac{1}{4}AB.$ 



**31.** Two parallel lines land m are intersected by  $l \in$ a transversal p (see figure). Show that the quadrilateral formed by the bisectors of interior  $m \in$ angles is a rectangle.



**32.** *PQRS* is a rhombus with  $\angle QPS = 50$ . Find  $\angle RQS$ .

**33.** In the given figure, ABCD is a square, side AB is produced to points P and Q in such a way that PA = AB = BQ. Prove that DQ = CP.



**34.** In the adjoining figure, points *A* and *B* are on the same side of a line *m*,  $AD \perp m$  and  $BE \perp m$  and meet *m* at *D* and *E*, respectively. If *C* is the mid-point of *AB*, then prove that CD = CE.



35. In the given quadrilateral ABCD, X and Y

are points on diagonal ACsuch that AX = CY and BXDY is a parallelogram. Show that ABCD is a parallelogram.



# Long Answer Type Questions (LA)

**36.** In the given figure, *ABCD* is a parallelogram and *E* is the mid-point of *AD*. A line through *D*, drawn parallel to *EB*, meets *AB* produced at *F* and *BC* at *L*. Prove that (i) AF = 2DC (ii) DF = 2DL



**37.** In  $\triangle ABC$ , AB = 18 cm, BC = 19 cm and AC = 16 cm. *X*, *Y* and *Z* are mid-points of *AO*, *BO* and *CO* respectively as shown in the figure. Find the perimeter of  $\triangle XYZ$ .



**38.** Prove that the line segment joining the midpoints of the diagonals of a trapezium is parallel to each of the parallel sides and is equal to half the difference of these sides.

**39.** ABCD is a parallelogram. AB and AD are produced to P and Q respectively such that BP = AB and DQ = AD. Prove that P, C, Q lie on a straight line.

**40.** P, Q, R and S are respectively the mid-points of sides AB, BC, CD and DA of quadrilateral ABCD in which AC = BD and  $AC \perp BD$ . Prove that PQRS is a square.

Get More Learning Materials Here :





#### ANSWERS

#### **OBJECTIVE TYPE QUESTIONS**

**1.** (a) : Number of angles in a quadrilateral = 4.

- **2.** (c) : Let the measure of fourth angle be *x*.
- Now, sum of angles of a quadrilateral = 360°
- $\Rightarrow 70^{\circ} + 120^{\circ} + 50^{\circ} + x = 360^{\circ}$
- $\Rightarrow 240^{\circ} + x = 360^{\circ} \Rightarrow x = 120^{\circ}$

**3.** (b): Here,  $X = \text{Sum of angles of a triangle} = 180^\circ$ ,  $Y = \text{Sum of angles of a quadrilateral} = 360^\circ$ Now,  $2X = 2 \times 180^\circ = 360^\circ = Y$ 

 $\therefore 2X = Y$ 

**4.** (a) : Let the quadrilateral be *ABCD* in which

- $\angle A = 90^\circ$ ,  $\angle B = 2x$ ,  $\angle C = 3x$  and  $\angle D = 4x$ .
- Then,  $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$
- $\Rightarrow 90^\circ + 2x + 3x + 4x = 360^\circ$
- $\Rightarrow 9x = 270^{\circ} \Rightarrow x = 30^{\circ}$

 $\therefore \quad \angle B = 60^{\circ}, \angle C = 90^{\circ}, \angle D = 120^{\circ}$ 

Hence, the largest angle is 120°.

5. (b): We have, 
$$x + \angle A = 180^{\circ}$$
 (Linear pair)  
 $\Rightarrow x = 180^{\circ} - \angle A$  similarly,  $y = 180^{\circ} - \angle B$ ,  
 $z = 180^{\circ} - \angle C$ ,  $t = 180^{\circ} - \angle D$ 

$$\Rightarrow x + y + z + t = 720^{\circ} - (\angle A + \angle B + \angle C + \angle D)$$
$$= 720^{\circ} - 360^{\circ} = 360^{\circ}$$

**6.** (**b**) : In a trapezium, only one pair of opposite sides are parallel.

7. (c) : A blackboard is in the shape of a rectangle.

**8.** (b): Diagonals of a rhombus are perpendicular to each other. So, the angle between them is 90°.

**9.** (c) : In a square, all the four sides are equal and all the angles are of equal measure, *i.e.*, 90°.

**10.** (d): Diagonals of a kite are not equal.

- **11.** (c) : We know, the angles of a square are bisected by the diagonals.
- $\therefore \angle OCX = 45^{\circ}$

Also,  $\angle COD + \angle COX = 180^{\circ}$  (Linear pair)  $\Rightarrow 105^{\circ} + \angle COX = 180^{\circ} \Rightarrow \angle COX = 180^{\circ} - 105^{\circ} = 75^{\circ}$ Now, in  $\triangle COX$ , we have

$$\angle OCX + \angle COX + \angle OXC = 180^{\circ}$$

- $\Rightarrow 45^{\circ} + 75^{\circ} + x = 180^{\circ}$
- $\Rightarrow \quad x = 180^\circ 120^\circ = 60^\circ.$
- **12.** (c) : Let the angles of quadrilateral *ABCD* be 3x, 7x, 6x and 4x respectively.
- $\therefore$  3x + 7x + 6x + 4x = 360°
- [Angle sum property of a quadrilateral]  $\Rightarrow 20x = 360^{\circ}$  A
- $\Rightarrow x = 18^{\circ}$
- $\therefore \quad \text{Angles of the quadrilateral are} \\ \angle A = 3 \times 18^\circ = 54^\circ \\ \angle B = 7 \times 18^\circ = 126^\circ \\ \angle C = 6 \times 18^\circ = 108^\circ \\ \end{bmatrix}$

and  $\angle D = 4 \times 18^\circ = 72^\circ$ 

Now, for the line segments *AD* and *BC*, with *AB* as transversal  $\angle A$  and  $\angle B$  are co-interior angles.

- Also,  $\angle A + \angle B = 54^\circ + 126^\circ = 180^\circ$
- $\therefore AD \parallel BC$

Thus, *ABCD* is a trapezium.

**13.** (c) : Sum of adjacent angles of a parallelogram is 180°.

 $\therefore \quad \angle A + \angle B = 180^{\circ} \Rightarrow 75^{\circ} + \angle B = 180^{\circ} \Rightarrow \angle B = 105^{\circ}$ 

**14.** (a) :  $\angle ABC + \angle BAD = 180^{\circ}$ 

(:: Sum of adjacent angles of a parallelogram is 180°)

 $\Rightarrow \ \angle ABC = 180^\circ - 70^\circ = 110^\circ$ 

 $\Rightarrow \ \ \angle ABD = \angle ABC - \angle DBC = 110^{\circ} - 70^{\circ} = 40^{\circ}$ 

Now, *CD* || *AB* and *BD* is transversal.

- $\therefore \quad \angle CDB = \angle ABD = 40^{\circ} \qquad (Alternate angles)$
- **15.** (a) : Given, *ABCD* is a parallelogram.
- $\therefore$  *AD* || *BC* and *DF* is a transversal.
- $\therefore \quad \angle ADF = \angle DFC = 60^{\circ} \qquad (Alternate angles)$
- Also,  $\angle BFD + \angle DFC = 180^{\circ}$  (Linear pair)  $\Rightarrow \angle BFD + 60^{\circ} = 180^{\circ} \Rightarrow \angle BFD = 180^{\circ} - 60^{\circ} = 120^{\circ}$
- **16.** (d): Let the other two angles be 3x and 5x.
- Now, sum of angles of a quadrilateral =  $360^\circ$ .
- $\therefore \quad 55^{\circ} + 65^{\circ} + 3x + 5x = 360^{\circ}$
- $\Rightarrow \quad 120^{\circ} + 8x = 360^{\circ} \Rightarrow 8x = 240^{\circ} \Rightarrow x = 30^{\circ}$
- $\therefore$  Two angles are 90° and 150°.

**17.** (a) : Diagonals of quadrilateral bisect each other at right angle.

 $\therefore$  It is a square or a rhombus.

Also, all the sides of square or rhombus are equal.

 $\therefore$  CD = 5 cm.

**18.** (a) : In  $\triangle ADC$ ,

 $x + y + \angle ADC = 180^{\circ}$  (By angle sum property of a triangle)

$$\Rightarrow \angle ADC = 180^{\circ} - (x + y) \qquad \dots (i)$$
  
$$\therefore \angle ABC = \angle ADC$$

(: Opposite angles of parallelogram are equal)  $\therefore z = 180^{\circ} - (x + y)$  [Using (i)]

 $\Rightarrow z + x + y = 180^{\circ}$ 

**19.** (a) : If a pair of opposite sides of a quadrilateral is equal and parallel, then it is a parallelogram.

- **20.** (a) : Here,  $EF \parallel BC$  and F is mid-point of AC.
- $\therefore$  By converse of mid-point theorem, *E* is the mid-point of *AB*.

...(1)

- $\Rightarrow$  AB = 2(AE) = 2 × 3.5 cm = 7 cm
- **21.** (c) : Let *ABC* be an equilateral triangle.

 $\therefore AB = BC = AC$ . Let *D*, *E*, *F* are mid-points of sides

*BC, AC, AB* respectively.

7x(

$$DE = \frac{1}{2}AB, EF = \frac{1}{2}BC, DF = \frac{1}{2}AC$$

(From (i))

 $\therefore DE = EF = DF$ Hence, *DEF* is an equilateral triangle.

Get More Learning Materials Here :



**22.** (a) : Let *ABC* be the triangle and *D*, *E*, *F* are mid-points of sides *BC*, *AC*, *AB* respectively. ... By mid-point theorem,

DE || AB, EF || BC, DF || AC

:. DEAF, BDEF, FDCE are all parallelograms. Now, *DE* is the diagonal of parallelogram *FDCE* 

 $\therefore \quad \Delta DEC \cong \Delta EDF$ 

Similarly,  $\Delta FAE \cong \Delta EDF$ 

and  $\triangle BFD \cong \triangle EDF$ 

Hence, all four triangles are congruent.

**23.** (d): Given, *M* and *N* are respectively mid-points of non-parallel sides PS and QR of trapezium PORS.



Join *RM* and produce it to meet *QP* produced at *X*. In  $\triangle SMR$  and  $\triangle PMX$ ,

 $\angle SMR = \angle PMX$  (Vertically opposite angles)  $\angle SRM = \angle PXM$ 

(: Alternate angles as,  $SR \parallel QX$  and XR is transversal) SM = PM(:: M is mid-point of PS)  $\therefore \Delta SMR \cong \Delta PMX$ (By AAS congruence rule)

 $\Rightarrow$  MR = MX and SR = PX (By C.P.C.T.)

Now, in  $\Delta RXQ$ , *M* is the mid-point of *XR*, as *XM* = *MR* and *N* is the mid-point of *RQ*.

$$\therefore \text{ By mid-point theorem, } MN \parallel XQ \text{ and } MN = \frac{1}{2}XQ$$

$$\Rightarrow MN \parallel PQ \text{ and } MN = \frac{1}{2}(XP + PQ) = \frac{1}{2}(SR + PQ)$$
$$(\because SR = XP)$$

Hence,  $MN \parallel PQ$  and  $MN = \frac{1}{2}(SR + PQ)$ 

**24.** (b): In  $\triangle CDB$ , we have CD = CB

[:: adjacent sides of rhombus are equal]

 $\Rightarrow \angle CBD = \angle CDB = x$ In  $\triangle BCD$ ,  $\angle BCD = 70^{\circ}$ 

- and  $\angle CDB + \angle CBD + \angle DCB = 180^{\circ}$
- $\Rightarrow x + x + 70^{\circ} = 180^{\circ} \Rightarrow x = 55^{\circ}$

$$\Rightarrow \angle CDB = 55^{\circ}$$

**25.** (b): Since, adjacent angles of a parallelogram are supplementary.

So,  $2x + 25^{\circ} + 3x - 5^{\circ} = 180^{\circ}$ 

$$\Rightarrow 5x = 160^{\circ} \Rightarrow x = 32$$

**26.** (a) : Let the three angles  $\angle T$ ,  $\angle A$  and  $\angle R$  be 5x, 3xand 7x respectively.

•.•  $\angle S + \angle T + \angle A + \angle R = 360^{\circ}$ 

$$\Rightarrow 120^\circ + 5x + 3x + 7x = 360^\circ$$

- $\Rightarrow 15x = 240^{\circ} \Rightarrow x = 16^{\circ}$
- $\angle R = 7 \times 16 = 112^{\circ}$ *.*..
- **27.** (b): Since *ABCD* is a trapezium.

 $x + 20^{\circ} + 2x + 10^{\circ} = 180^{\circ}$ (Sum of measure of interior angles is 180°)  $\Rightarrow$  3x + 30 = 180°  $\Rightarrow$  x = 50°

and  $y + 92^\circ = 180^\circ \Rightarrow y = 88^\circ$ 

**28.** (a) : Given  $\angle A + \angle C = 2(\angle B + \angle D)$  $\Rightarrow$  140° +  $\angle C$  = 2 $\angle B$  + 2 × 60°  $\Rightarrow 2\angle B - \angle C = 20^{\circ}$ ...(i) Also,  $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$  $\Rightarrow$  140° +  $\angle B$  +  $\angle C$  + 60° = 360°  $\Rightarrow \angle B + \angle C = 160^{\circ}$ ...(ii) Using (i) and (ii), we get  $\angle B = 60^{\circ}$ **29.** (c) : Let the smallest angle be  $\angle A = x^\circ$ ,

and other angle be  $\angle B = (2x - 24)^\circ$  $\angle A + \angle B = 180^{\circ}$ ....

x + 2x - 24 = 180 $\Rightarrow$ 

 $3x = 204 \implies x = 68$  $\Rightarrow$ 

 $\angle A = 68^{\circ}$ *.*.. and  $\angle B = (2x - 24)^\circ = (2 \times 68 - 24)^\circ = 112^\circ$ Since, opposite angles of a parallelogram are equal. So,  $\angle A = \angle C = 68^\circ$ ,  $\angle B = \angle D = 112^\circ$ 

30. (c) : Let the measures of the angles be 2x, 4x, 5x and 7x.  $2x + 4x + 5x + 7x = 360^{\circ}$ 4x(Angle sum property)  $18x = 360^\circ \implies x = 20^\circ$  $\Rightarrow$  $\angle A = 40^{\circ}, \angle B = 80^{\circ}, \angle C = 100^{\circ}, \angle D = 140^{\circ}$ ·.. As  $\angle A + \angle D = 180^{\circ}$  and  $\angle B + \angle C = 180^{\circ}$ 

 $\Rightarrow$  CD || AB

ABCD is a trapezium. *.*..

**31.** (c) : In  $\triangle PQR$ , A and B are mid-points of PQ and PR respectively.  $\therefore$  *AB* || *QR* [By mid-point theorem]

$$\therefore \ \ \angle AQR = \angle PAB$$
 [Corresponding angles]

$$\therefore \quad \angle PQR = \angle PAB = 60^{\circ} \qquad \qquad Q^{2}$$

**32.** (c) : We have,  $\angle ADC + b = 180^{\circ}$ [Linear pair]

 $\angle ADC = 180^{\circ} - b$  $\Rightarrow$ ...(i) Also,  $\angle ABC + a = 180^{\circ}$ [Linear pair]

$$L = 100$$

 $\Rightarrow \angle ABC = 180^\circ - a$ In quadrilateral *ABCD*, we have

 $\angle ABC + \angle BCD + \angle ADC + \angle BAD = 360^{\circ}$ 

[By angle sum property of a quadrilateral]

...(ii)

🕀 www.studentbro.in

 $180^{\circ} - a + y + 180^{\circ} - b + x = 360^{\circ}$ [Using (i) and (ii)]  $\Rightarrow$ 

 $360^{\circ} - a - b + x + y = 360^{\circ}$  $\Rightarrow$ 

 $\Rightarrow$ x + y = a + b

**CLICK HERE** 

**33.** (b): Given, *PQRS* is a parallelogram.

 $\therefore$  SR | | PQ and SR = PQ ...(i) But, QT = PQ(Given) ...(ii) From (i) and (ii), we have SR = PQ = QTIn  $\triangle SRO$  and  $\triangle TQO$  $\angle RSO = \angle QTO$ (Alternate angles) SR = QT(Proved above)  $\angle SRO = \angle TQO$ (Alternate angles) ASPO ~ ATOO (Bu ACA

$$\Rightarrow RO = OQ$$
 (By ASA congruency citeria)

34. (b): If consecutive sides of a parallelogram are equal, then it is necessarily a rhombus.

**35.** (d): Let *ABC* be right angled triangle and  $\angle ABC = 90^{\circ}$ . Let *D*, *E*, *F* are mid-points of sides *BC*,

AC and AB respectively.



- $EF \parallel BD$  and  $BF \parallel DE$ (By mid-point theorem)
- *BDEF* is a parallelogram.  $\Rightarrow$

....

 $\angle FED = \angle FBD = 90^{\circ}$ ....

(:: Opposite angles of a parallelogram are equal) *DEF* is right angled triangle.

**36.** (b): A parallelogram can be formed by joining the mid points of sides of quadrilateral.

37. (b) : As P and Q are mid points of AB and AD respectively.

$$\therefore PQ = \frac{1}{2}BD \qquad \dots (1)$$

and  $PQ \parallel BD$ [By midpoint theorem]

**38.** (a) : As, R and S are mid points of CD and BC respectively.

$$\therefore RS \parallel BD \text{ and } RS = \frac{1}{2}BD \text{ i.e., } BD = 2RS \qquad \dots (2)$$

- **39.** (b) : From (1) and (2),  $RS = PQ = \frac{1}{2}BD$
- 40. (a) : Perimeter of quadrilateral PQRS = PQ + QR + RS + SP

**41.** (d) : All the conditions given in options (a), (b) and (c) are necessary for *ABCD* to be a quadrilateral.

**42.** (c) : In a parallelogram, diagonal can't bisect each other.

43. (a) : 
$$\angle A = \angle C \Rightarrow \frac{1}{2} \angle A = \frac{1}{2} \angle C$$
  
 $\Rightarrow \angle YAX = \angle YCX$   
Also,  $\angle AYC + \angle YCX = 180^{\circ}$   
 $\therefore \angle AYC + \angle YAX = 180^{\circ}$   
 $\therefore \angle AYC + \angle YAX = 180^{\circ}$ 

So,  $AX \parallel CY$  (: Interior angles on the same side of the transversal are supplementary)

**44.** (b) : As *ABCD* is a parallelogram.

 $\angle A = \angle C = 63^{\circ}$ 

(Opposite angles of a parallelogram are equal) Also, *AEFG* is a parallelogram.

 $\therefore \angle A + \angle G = 180^{\circ}$  (Adjacent angles are supplementary)  $\angle G = 180^{\circ} - 63^{\circ} = 117^{\circ}$ *.*...

**45.** (c) : Let the angles be 3*x*, 5*x*, 5*x* and 7*x*. Now,  $3x + 5x + 5x + 7x = 360^{\circ}$ 

 $20x = 360^\circ \Rightarrow x = 18^\circ$ 

$$\therefore \text{ All angles are 54°, 90°, 90°, 126°}$$

**46.** (b) : In  $\triangle ADE$  and  $\triangle CFE$ , we have

| AE = CE                                   | (Given)                       |
|-------------------------------------------|-------------------------------|
| DE = FE                                   | (Given)                       |
| $\angle AED = \angle CEF$                 | (Vertically opposite angles)  |
| $\therefore  \Delta ADE \cong \Delta CFE$ | (By SAS congruency criterion) |

- 47. (b) :  $\angle EFC = \angle EDA$ (By CPCT)
- **48.** (a) :  $\angle ECF = \angle EAD$ (By CPCT)
- **49.** (d) : *CF* = *AD* (By CPCT)
- **50.** (c) : CF || BD  $(:: \angle ECF = \angle EAD)$

**51.** (c) : In guadrilateral *ABXC*, we have

AD = DX[Given]

BD = DC[Since *AD* is median]

So, diagonals AX and BC bisect each other but not at right angles.

Therefore, *ABXC* is a parallelogram.

52. (a) : Clearly, statement-II is true. Now, in  $\triangle ADC$ , *Q* is the mid-point of AC such that  $PQ \parallel AD$ .



 $\Rightarrow DP = PC$ 

53. (a) : Since, opposite angles of a parallelogram are equal. Therefore,  $3x - 2 = 50 - x \Rightarrow x = 13$ .

So, angles are  $(3 \times 13 - 2)^\circ = 37^\circ$  and  $(50 - 13)^\circ = 37^\circ$ .

54. (a): Since, diagonals of a square bisect each other at right angles.

 $\angle AOB = 90^{\circ}$ ....

**55.** (b): In  $\triangle ABC$ , *E* and *F* are midpoint of the sides AC and AB respectively.

:. FE || BC [By mid-point theorem Now, in  $\triangle ABP$ , *F* is mid-point of AB and

 $FQ \parallel BP$ 

 $\Rightarrow$  Q is mid-point of AP

$$\Rightarrow AQ = QP.$$

#### SUBJECTIVE TYPE QUESTIONS

1. We know that consecutive interior angles of a parallelogram are supplementary.

 $(x + 60^{\circ}) + (2x + 30^{\circ}) = 180^{\circ}$ ....

$$\therefore \quad 3x + 90^\circ = 180^\circ \implies 3x = 90^\circ \implies x = 30^\circ$$

Thus, two consecutive angles are  $(30^\circ + 60^\circ)$ ,  $(2 \times 30^\circ +$ 30°) *i.e.*, 90° and 90°.

Hence, the special name of the given parallelogram is rectangle.

 $\angle PQR = \angle PSR = 125^{\circ}$ 2.

(:: Opposite angles of a parallelogram are equal) Now,  $\angle PQR + \angle RQT = 180^{\circ}$ (Linear pair)  $125^{\circ} + \angle RQT = 180^{\circ} \Rightarrow \angle RQT = 55^{\circ}$  $\Rightarrow$ 

3. No.

Sum of the angles =  $110^{\circ} + 80^{\circ} + 70^{\circ} + 95^{\circ}$ •.• = 355° ≠ 360°

Thus, the given angles cannot be the angles of a quadrilateral.







4. Yes, QL = LRAs, opposite sides of a parallelogram are equal.  $\therefore$  In parallelogram *QLMN*, *QL* = *NM* ...(i) In parallelogram *NLRM*, *NM* = *LR* ...(ii) From (i) and (ii), QL = LR5. Since,  $\angle A + \angle B = 180^{\circ}$ [Co-interior angles]  $\angle B = 180^{\circ} - 78^{\circ} = 102^{\circ}$ 

Now,  $\angle B = \angle D = 102^{\circ}$ and,  $\angle A = \angle C = 78^{\circ}$ 

[:: opposite angles of a parallelogram are equal] We have,  $\angle A + \angle B = 180^{\circ}$ 6. [Co-interior angles]  $60^{\circ} + \angle ABD + 55^{\circ} = 180^{\circ} \implies \angle ABD = 65^{\circ}$  $\Rightarrow$ Also,  $\angle ABD = \angle CDB$ 

[Alternate interior angles are equal]  $\therefore \angle CDB = \angle ABD = 65^{\circ}$ We have,  $\angle ADB = \angle DBC$ 

[Alternate interior angles are equal]

$$\Rightarrow \angle ADB = 55^{\circ}$$

7. We have,  $AB = AC \implies \angle BCA = \angle B$ 

Now,  $\angle CAD = \angle B + \angle BCA$  [Exterior angle property]  $\Rightarrow 2\angle CAP = 2\angle BCA \quad [:: AP is the bisector of \angle CAD]$  $\Rightarrow \angle CAP = \angle BCA \Rightarrow AP \parallel BC$ Also,  $AB \parallel CP$ [Given]

Hence, *ABCP* is a parallelogram.

8. If one angle of a rhombus is a right angle, then it is necessarily a square.

Since a rhombus is a parallelogram Q

∴ Its opposite angles are equal.  
⇒ 
$$\angle A = \angle C$$
  
∴  $\angle C = 60^{\circ}$  [::  $\angle A = 60^{\circ}$  (Given)]  
Now, required sum =  $\angle A + \angle C$   
=  $60^{\circ} + 60^{\circ} = 120^{\circ}$   
**10.** We have given, a trapezium  
 $ABCD$ , whose parallel sides are  $AB$   
and  $DC$ .  
Since,  $AB \mid\mid CD$  and  $AD$  is  
a transversal.  
∴  $\angle A + \angle D = 180^{\circ}$  [Angles on same side of transversal]  
⇒  $\angle D$ 

Similarly, 
$$\angle C = 135$$

11. In 
$$\triangle COD$$
, we have  
 $\angle COD + \angle 1 + \angle 2 = 180^{\circ}$   
 $\Rightarrow \angle COD = 180^{\circ} - (\angle 1 + \angle 2)$   
 $\Rightarrow \angle COD = 180^{\circ} - (\frac{1}{2} \angle C + \frac{1}{2} \angle D)$   
 $\Rightarrow \angle COD = 180^{\circ} - \frac{1}{2} (\angle C + \angle D)$   
 $\Rightarrow \angle COD = 180^{\circ} - \frac{1}{2} \{360^{\circ} - (\angle A + \angle B)\}$   
 $[\because \angle A + \angle B + \angle C + \angle D = 360^{\circ}]$   
 $\Rightarrow \angle COD = \frac{1}{2} (\angle A + \angle B)$ 

**12.** In  $\triangle BCD$ , we have  $\angle BDC + \angle DCB + \angle CBD = 180^{\circ}$ 

[Angle sum property of a triangle]

$$\Rightarrow 5a + 9a + 4a = 180^{\circ}$$

 $\Rightarrow$  $18a = 180^{\circ} \implies a = 10^{\circ}$ 

 $\angle C = 9 \times 10^\circ = 90^\circ$ *.*..

Since, opposite angles of a parallelogram are equal Therefore,  $\angle A = \angle C \implies \angle A = 90^{\circ}$ 

13. True. Given, ABCD is a quadrilateral whose diagonals bisect each other. Then, it should be a parallelogram.

Also,  $\angle A$  and  $\angle B$  are adjacent angles of parallelogram ABCD. So, their sum should be 180°.

Now,  $\angle A + \angle B = 45^{\circ} + 135^{\circ} = 180^{\circ}$ 

**14.** Since, *D* and *E* are the mid-point of sides *AB* and AC respectively.

$$\therefore AD = \frac{1}{2}AB \text{ and } AE = \frac{1}{2}AC$$

By mid-point theorem,  $DE = \frac{1}{2}BC$ 

$$\therefore AD + AE + DE = \frac{1}{2}(AB + AC + BC)$$

Perimeter of 
$$\triangle ADE = \frac{1}{2} \times \text{perimeter of } \triangle ABC$$

$$=\frac{1}{2} \times 35 \text{ cm} = 17.5 \text{ cm}$$

Hence, the perimeter of  $\triangle ADE$  is 17.5 cm.

**15.** In  $\triangle ABC$ ,  $DE \parallel AB$  and AD is the median. So, *D* is the mid-point of *BC*. By converse of mid-point theorem, *E* is the mid-point of *AC*. Hence, *BE* is median.

16. We have,

 $\Delta B$ 

$$MN = \frac{1}{2}BC$$
,  $MP = \frac{1}{2}AC$  and  $NP = \frac{1}{2}AB$   
[By midpoint theorem]

 $\Rightarrow BC = 6 \text{ cm}, AC = 5 \text{ cm}$ and AB = 7 cm. The value of (BC + AC) - AB= (6 + 5) - 7 = 4 cm.

**17.** *ABC* is an isosceles triangle with AB = AC and D, E and F as the mid-points of sides BC, CA and AB respectively. AD intersects FE at O. Join *DE* and *DF*. Since, *D*, *E* and *F* are mid-points of sides *BC*, *AC* and *AB* respectively.



 $DE \parallel AB$  and  $DE = \frac{1}{2}AB$  [By mid-point theorem] Also,  $DF \parallel AC$  and  $DF = \frac{1}{2}AC$ But, AB = AC[Given]





$$\Rightarrow \frac{1}{2}AB = \frac{1}{2}AC$$

$$\Rightarrow DE = DF \qquad \dots (i)$$

Now, 
$$DE = \frac{1}{2}AB \Rightarrow DE = AF$$
 ...(ii)

and, 
$$DF = \frac{1}{2}AC \Rightarrow DF = AE$$
 ...(iii)

From (i), (ii) and (iii), we have

 $DE = AE = AF = DF \Rightarrow DEAF$  is a rhombus.

Since, diagonals of a rhombus bisect each other at right angles.

 $\therefore AD \perp FE \text{ and } AD \text{ is bisected by } FE.$  **18.** Here,  $\angle ABE + \angle EBF = 90^{\circ}$   $\Rightarrow 30^{\circ} + \angle EBF = 90^{\circ}$   $\Rightarrow \angle EBF = 60^{\circ} \qquad \dots(i)$ and  $\angle BFE + \angle CFE = 180^{\circ} \qquad [\text{Linear pair}]$   $\Rightarrow \angle BFE + 144^{\circ} = 180^{\circ}$   $\Rightarrow \angle BFE = 180^{\circ} - 144^{\circ} = 36^{\circ} \qquad \dots(i)$ Now, in  $\triangle BEF$ ,

$$\angle EBF + \angle BFE + \angle BEF = 180^{\circ} \qquad (Angle sum property) \\ \Rightarrow 60^{\circ} + 36^{\circ} + \angle BEF = 180^{\circ} \qquad [Using (i) and (ii)] \\ \Rightarrow \angle BEE = 180^{\circ} \qquad 96^{\circ} = 84^{\circ}$$

 $\Rightarrow \angle BEF = 180^\circ - 96^\circ = 84^\circ$ 

**19.** Let *ABCD* be a parallelogram Dwith *AB* and *DC* as longer sides and *AD* and *BC* as shorter sides. Now, *AB* = *DC* = 9.5 cm [Oppos ite sides of a parallelogram *A* are equal and longer side = 9.5 cm (Given)] Let *AD* = *BC* = *x* Now, *AB* + *BC* + *CD* + *DA* = 30

$$[Perimeter = 30 \text{ cm (Given)}]$$
  

$$\Rightarrow 9.5 + x + 9.5 + x = 30$$

 $\Rightarrow 2x = 30 - 19 = 11 \Rightarrow x = 5.5 \text{ cm}$ 

- $\therefore$  Length of shorter side = 5.5 cm
- **20.** Since, *ABCD* is a parallelogram.

$$\therefore \ \ \angle A = \angle C$$

$$\Rightarrow \ (3x - 20)^{\circ} = (x + 40)^{\circ}$$

$$\Rightarrow \ 3x - x = 40 + 20$$

$$\Rightarrow \ 2x = 60 \Rightarrow x = 30$$
Also,  $\angle A + \angle B = 180^{\circ}$ 

$$\Rightarrow \ (3x - 20)^{\circ} + (y + 15)^{\circ} = 180^{\circ}$$

- $\Rightarrow 3x + y = 185 \Rightarrow y = 185 90 = 95$
- $\therefore x + y = 30 + 95 = 125$
- **21.**  $\angle SPQ = \angle QRS = 2x$

(: Opposite angles of a parallelogram are equal) In  $\triangle PSQ$ ,  $\angle PSQ + \angle PQS + \angle SPQ = 180^{\circ}$  $\Rightarrow 4x + 4x + 2x = 180^{\circ}$ 

$$\Rightarrow 10x = 180^{\circ}$$

$$\Rightarrow x = 180^{\circ}$$

$$\Rightarrow x = 180^{\circ}$$
Now,  $\angle PSR = \angle PQR$ 
(: Opposite angles of a parallelogram are equal)
$$\Rightarrow 4x + \angle QSR = 4x + \angle SQR$$

$$\Rightarrow \angle QSR = \angle SQR$$
...(i)

 $\Rightarrow 2 \times 18^{\circ} + 2 \angle RSQ = 180^{\circ} \qquad [From (i)]$   $\Rightarrow 2 \angle RSQ = 180^{\circ} - 36^{\circ} = 144^{\circ} \Rightarrow \angle RSQ = 72^{\circ}$ Hence,  $\angle P = \angle R = 2 \times 18^{\circ} = 36^{\circ}$ ,  $\angle Q = \angle S = 4x + 72^{\circ} = 4 \times 18^{\circ} + 72^{\circ} = 144^{\circ}$ 

**22.** We have, AB = BC and have to prove that DE = EF. Now, trapezium *ACFD* is divided into two triangles namely  $\triangle ACF$  and  $\triangle AFD$ . In  $\triangle ACF$ ,  $AB = BC \Rightarrow B$  is mid-point of *AC* and  $BC \parallel CE$ .

and 
$$BG \parallel CF$$
 [ $\because m \parallel n$ ]  
So, *G* is the mid-point of *AF*.

[By converse of mid-point theorem] Now, in  $\triangle AFD$ , *G* is the mid-point of *AF*. and *GE* || *AD* [ $\because m || l$ ]

 $\therefore E \text{ is the mid-point of } FD.$ [By converse of mid-point theorem]  $\Rightarrow DE = EF$ 

 $\therefore$  *l*, *m* and *n* cut off equal intercepts on *q* also.

**23.** Let *ABCD* be the rhombus and greater diagonal *AC* be *x* cm.

$$\therefore$$
 Smaller diagonal,  $BD = \frac{1}{3}AC = \frac{x}{3}$  cm

Since diagonals of rhombus are perpendicular bisector of each other. D

$$\therefore OA = \frac{x}{2} \text{ cm and } OB = \frac{x}{6} \text{ cm}$$
In  $\triangle AOB$ , we have
$$AB^2 = OA^2 + OB^2$$

$$\Rightarrow 10^2 = \left(\frac{x}{2}\right)^2 + \left(\frac{x}{6}\right)^2$$

$$A = \frac{100}{10} \text{ cm}$$

$$A = \frac{x^2}{4} + \frac{x^2}{36} \Rightarrow 100 = \frac{10}{36}x^2 \Rightarrow x = 6\sqrt{10} \text{ cm}$$

**24.** Let *D*, *E* and *F* be the mid-points of sides *BC*, *CA* and *AB* respectively. A

In 
$$\triangle ABC$$
, F and E are mid-points of AB and AC.

: 
$$FE \parallel BC$$
 and  $FE = \frac{1}{2}BC$ 

 $\therefore FE \parallel BD \text{ and } FE = BD$ 

 $\therefore$  *FEDB* is a parallelogram.

Similarly, CDFE and AFDE are also parallelograms.

- $\therefore \quad \angle B = \angle DEF, \ \angle C = \angle DFE \text{ and } \angle FDE = \angle A$
- $\Rightarrow \angle DEF = 60^\circ, \angle DFE = 70^\circ \text{ and } \angle FDE = 50^\circ$
- **25.** Suppose *AC* and *BD* intersect at *O*.

Then, 
$$OC = \frac{1}{2}AC$$
  
Now,  $CQ = \frac{1}{4}AC$  [Given]

 $\Rightarrow CQ = \frac{1}{2}OC$ 

$$\begin{array}{c}
D \\
P \\
P \\
R \\
R \\
B
\end{array}$$

In  $\triangle COD$ , *P* and *Q* are the midpoints of *DC* and *OC* respectively.

 $\therefore PQ \parallel DO \qquad [By mid-point theorem]$  $Also, in <math>\triangle COB$ , *Q* is the midpoint of *OC* and *QR*  $\parallel OB \therefore$  *R* is the midpoint of *BC*.

[By converse of mid-point theorem]



**26.**  $\therefore$  *ABCD* is parallelogram.

 $\Rightarrow AD = BC \text{ and } AD \parallel BC$  $\Rightarrow \frac{1}{3}AD = \frac{1}{3}BC \text{ and } AD \parallel BC$ 

 $\Rightarrow$  *AP* = *CQ* and *AP* || *CQ* Thus, *APCQ* is a quadrilateral such that one pair of opposite sides *AP* and *CQ* are parallel and equal. Hence, *APCQ* is a parallelogram.

**27.**  $\angle P + \angle Q = 180^{\circ}$ 

(Adjacent angles of parallelogram)  $\Rightarrow 60^\circ + \angle Q = 180^\circ \Rightarrow \angle Q = 120^\circ$ Since, *PA* and *QA* are bisectors of angles *P* and *Q* 

$$\therefore \quad \angle SPA = \angle APQ = \frac{1}{2} \angle P = \frac{1}{2} \times 60^\circ = 30^\circ$$

And 
$$\angle RQA = \angle AQP = \frac{1}{2} \angle Q = \frac{1}{2} \times 120^\circ = 60^\circ$$

Now,  $SR \parallel PQ$  and AP is transversal.  $\therefore \ \angle SAP = \angle APQ = 30^{\circ}$  [Alternate interior angles] In  $\triangle ASP$ , we have

 $\angle SAP = \angle APS = 30^{\circ}$ 

$$\Rightarrow SP = AS \qquad \dots(i)$$
(Sides opposite to equal angles are equal)

Similarly, QR = AR ...(ii) But, QR = SP [Opposite sides of parallelogram] ...(iii) From (i), (ii) and (iii), we have AS = AR

 $\Rightarrow$  A is the mid-point of SR.

**28.** We have, 
$$\angle SPK = \angle QPK$$
 ...(i)  
Now,  $PQ \parallel RS$  and  $PK$  is a transversal

$$\therefore \ \angle SKP = \angle QPK \text{ [Alternate angles]} \qquad \dots \text{(ii)}$$
  
From (i) and (ii)  $\angle SPK = \angle SKP$ 

$$\Rightarrow PS = SK \qquad \dots (iii)$$

(: Sides opposite to equal angles are equal) But *K* is the mid-point of *SR*.

$$SK = KR \qquad ...(v)$$

$$PS = QR \text{ (Opposite sides of parallelogram are equal)} \qquad ...(v)$$

From (iii) and (v), SK = PS = QRAlso, PQ = SR = SK + KR = 2SK [From (i)] = 2QR

**29.** Let the photo-frame be *ABC* such that BC = a, CA = b and AB = c and the mid-points of *AB*, *BC* and *CA* are *D*, *E* and *F* respectively. We have to determine the perimeter of  $\Delta DEF$ .

In  $\triangle ABC$ , *DF* is the line-segment joining the mid-points of sides *AB* and *AC*.

By mid-point theorem,  $DF \parallel BC$  and  $DF = \frac{BC}{2} = \frac{a}{2}$ 

Similarly, 
$$DE = \frac{AC}{2} = \frac{b}{2}$$
 and  $EF = \frac{AB}{2} = \frac{c}{2}$ 

 $\therefore \quad \text{Perimeter of } \Delta DEF = DF + DE + EF$  $= \frac{a}{2} + \frac{b}{2} + \frac{c}{2} = \frac{a+b+c}{2}$ 

**30.** We have, AL and CM are medians of  $\triangle ABC$ , *i.e.*, L and M are the mid-points of BC and AB respectively.

$$\therefore LC = BL = \frac{1}{2} BC \text{ and } BM = AM = \frac{1}{2}AB \qquad \dots \text{(i)}$$

In  $\triangle BMC$ , *L* is the mid-point of *BC* and *LN*  $\parallel$  *CM*. So, by converse of mid-point theorem, *N* is mid-point of *BM*.

*i.e.*, 
$$BN = NM = \frac{1}{2}BM$$
 ...(ii)

From (i) and (ii), we get

$$BN = \frac{1}{2} \left( \frac{1}{2} AB \right) \Rightarrow BN = \frac{1}{4} AB$$

**31.** It is given that  $l \parallel m$  and transversal p intersects them at points A and C respectively.

The bisectors of  $\angle PAC$  and  $\angle ACQ$  intersect at *B* and bisectors of  $\angle ACR$  and  $\angle SAC$  intersect at *D*. Now,  $\angle PAC = \angle ACR$ 

[Alternate angles as  $l \parallel m$  and p is a transversal]  $a_1 = \frac{1}{2} \angle PAC = \frac{1}{2} \angle ACR$ 

So, 
$$\frac{1}{2} \angle PAC = \frac{1}{2} \angle ACH$$
  
 $\Rightarrow \angle BAC = \angle ACD$ 

These form a pair of alternate angles for lines *AB* and *DC* with *AC* as transversal and they are equal also. So,  $AB \parallel DC$ 

Similarly, *BC* || *AD* 

Therefore, quadrilateral *ABCD* is a parallelogram. Also,  $\angle PAC + \angle CAS = 180^{\circ}$  [Linear pair]

So, 
$$\frac{1}{2} \angle PAC + \frac{1}{2} \angle CAS = \frac{1}{2} \times 180^{\circ} = 90^{\circ}$$

 $\Rightarrow \angle BAC + \angle CAD = 90^{\circ} \Rightarrow \angle BAD = 90^{\circ}$ So, *ABCD* is a parallelogram in which one angle is 90°.

Therefore, *ABCD* is a rectangle.32. Since a rhombus satisfies all the properties of a parallelogram.

 $\therefore \quad \angle QPS = \angle QRS$ [Opposite angles of a parallelogram]

 $\Rightarrow \angle QRS = 50^{\circ}$ 

[ $\therefore \angle QPS = 50^{\circ}$  (Given)]  $\therefore$  Diagonals of a rhombus bisect

the opposite angles.

$$\therefore \quad \angle ORQ = \frac{1}{2} \angle QRS \quad \Rightarrow \quad \angle ORQ = 25^{\circ}$$

Now, in  $\triangle ORQ$ , we have

 $\angle OQR + \angle ORQ + \angle ROQ = 180^{\circ}$  $\Rightarrow \angle OQR + 25^{\circ} + 90^{\circ} = 180^{\circ}$ 

[: Diagonals of a rhombus are perpendicular to each other  $\Rightarrow \angle ROQ = 90^{\circ}$ ]

$$\Rightarrow \angle OQR = 180^\circ - 115^\circ = 65^\circ$$

 $\therefore \ \angle RQS = 65^{\circ}$ 

**33.** Since, *ABCD* is a square.

 $\therefore AB = BC = CD = D\dot{A}$ 

Also, 
$$PA = AB = BQ$$

$$\therefore AB = BC = CD = DA = PA = BQ$$
In  $\triangle PDA$  and  $\triangle QCB$ ,  $PA = BQ$  (Given)  
 $AD = BC$  (Sides of a square)

Get More Learning Materials Here : 💵 🕤



Q A B



$$\angle A = \angle B$$
 (Each 90°)  

$$\Delta PDA \cong \Delta QCB$$
 (By SAS congruency rule)  

$$\Rightarrow PD = QC$$
 (By C.P.C.T.) ...(i)  

$$\angle PDA = \angle QCB$$
 (By C.P.C.T.) ...(ii)  
Now, 
$$\angle PDC = \angle PDA + \angle ADC$$
  

$$= \angle PDA + 90^{\circ}$$
 ...(iii)  

$$\angle QCD = \angle QCB + \angle BCD$$
  

$$= \angle OCB + 90^{\circ}$$
 ...(iv)

From (ii), (iii) and (iv), we have  $\angle PDC = \angle QCD$ 

Now, in  $\triangle PDC$  and  $\triangle QCD$ , PD = QC(Given) DC = DC(Common)  $\angle PDC = \angle QCD$ (Proved above)  $\Delta PDC \cong \Delta QCD$ (By SAS congruency rule) [By C.P.C.T.) DQ = CP*.*... 34. We have, C is the mid-point of AB  $\therefore AC = BC.$ Draw,  $CM \perp m$  and join AE. We have,  $AD \perp m$ ,

 $CM \perp m$  and  $BE \perp m$ .  $AD \parallel CM \parallel BE$ In  $\triangle ABE$ ,  $CG \parallel BE$  $[:: CM \parallel BE]$ and *C* is the mid-point of *AB*.

Thus, by converse of mid-point theorem, *G* is the midpoint of AE.

In  $\triangle ADE$ , *G* is the mid-point of *AE* and *GM* || *AD*.

 $[:: CM \parallel AD]$ Thus, by converse of mid-point theorem, *M* is mid-point of DE.

In  $\triangle CMD$  and  $\triangle CME$ , DM = EM(:: *M* is the mid-point of *DE*)  $\angle CMD = \angle CME = 90^{\circ}$  $(:: CM \perp m)$ CM = CM(Common)  $\Delta CMD \cong \Delta CME$ (By SAS congruence rule) ·•. So, CD = CE(By C.P.C.T.)

**35.** Since *BXDY* is a parallelogram. XO = YO÷. ...(i) and DO = BO...(ii) [:: Diagonals of a parallelogram bisect each other] Also, AX = CY(Given) ...(iii) Adding (i) and (iii), we have XO + AX = YO + CY $\Rightarrow AO = CO$ ...(iv)

From (ii) and (iv), we have

÷.,

AO = CO and DO = BO

Thus, ABCD is a parallelogram, because diagonals AC and BD bisect each other at O.

**36.** (i) As  $EB \parallel DF \Rightarrow EB \parallel DL$  and  $ED \parallel BL$ . Therefore, *EBLD* is a parallelogram.

$$\therefore BL = ED = \frac{1}{2} AD = \frac{1}{2}BC = CL \qquad \dots(i)$$

[:: *ABCD* is a parallelogram :: AD = BC] Now, in  $\triangle DCL$  and  $\triangle FBL$ , we have

CL = BL[from (i)]  $\angle DLC = \angle FLB$ (Vertically opposite angles)

|               | $\angle DCL = \angle FBL$     | (Alternate angles)           |
|---------------|-------------------------------|------------------------------|
| <i>:</i> .    | $\Delta DCL \cong \Delta FBL$ | (By ASA congruency criteria) |
| $\Rightarrow$ | CD = BF and $DL =$            | = $FL$ (By C.P.C.T.)         |
| Nov           | w, $BF = DC = AB$             | (ii)                         |
| $\rightarrow$ | $2AB = 2DC \implies AB$       | +AB = 2DC                    |

$$\Rightarrow AB + BF = 2DC \Rightarrow AB + AB - 2DC$$

$$(Using (ii))$$

2DC AF = 2DC $\Rightarrow$ 

(ii)  $\therefore DL = FL \Rightarrow DF = 2DL$ 

**37.** Here, in  $\triangle ABC$ , AB = 18 cm, BC = 19 cm,

AC = 16 cm.

m

E

M

In  $\triangle AOB$ , *X* and *Y* are the mid-points of *AO* and *BO*. By mid-point theorem, we have

$$XY = \frac{1}{2}AB = \frac{1}{2} \times 18 \text{ cm} = 9 \text{ cm}$$

In  $\triangle BOC$ , Y and Z are the mid-points of BO and CO. By mid-point theorem, we have

$$YZ = \frac{1}{2}BC = \frac{1}{2} \times 19 \text{ cm} = 9.5 \text{ cm}$$

And, in  $\triangle COA$ , Z and X are the mid-points of CO and AO.

By mid-point theorem, we have *.*..

. 
$$ZX = \frac{1}{2}AC = \frac{1}{2} \times 16 \text{ cm} = 8 \text{ cm}$$

Hence, the perimeter of  $\Delta XYZ = 9 + 9.5 + 8 = 26.5$  cm

**38.** Let, trapezium *ABCD* in which,  $AB \parallel DC$  and *P* and Q are the mid-points of its diagonals AC and BD respectively.

DP to

We have to prove (i)  $PQ \parallel AB$  and  $PQ \parallel DC$ 

(ii) 
$$PQ = \frac{1}{2}(AB - DC)$$
  
Join *D* and *P* and produce *DP* to  
meet *AB* at *R*.  
(i) Since *AB* || *DC* and transversal  
*AC* cuts them at *A* and *C*  
respectively.

**CLICK HERE** 

(Alternate angles) ...(1) In  $\triangle APR$  and  $\triangle CPD$ , ∠1 = ∠2 (From (1))AP = CP(:: *P* is the mid-point of *AC*)  $\angle 3 = \angle 4$ (Vertically opposite angles)  $\Delta APR \cong \Delta CPD$ (By ASA congruence rule)

AR = DC and PR = DP(By C.P.C.T.)  $\rightarrow$ In  $\triangle DRB$ , *P* and *Q* are the mid-points of side *DR* and DB respectively.

$$\therefore PQ \parallel RB \qquad (By mid-point theorem) \\\Rightarrow PO \parallel AB \qquad (: RB is a part of AB)$$

$$\Rightarrow PO \parallel AB \text{ and } PO \parallel DC \qquad (\cdot \cdot AB \parallel CD)$$

(ii) In  $\triangle DRB$ , *P* and *Q* are the mid-points of side *DR* 

∴ 
$$PQ = \frac{1}{2}RB$$
 (By mid-point theorem)  
⇒  $PQ = \frac{1}{2}(AB - AR)$  ⇒  $PQ = \frac{1}{2}(AB - DC)$ 

[From part (i), AR = DC]

🕀 www.studentbro.in

Get More Learning Materials Here : 📕

**39.** *CP* and *CQ* are joined. ABCD is a parallelogram. So, BC = AD, AB = DC[Opposite sides of parallelogram] and  $\angle ABC = \angle ADC$ [Opposite angles of parallelogram] Their supplementary angles are equal • So,  $\angle PBC = \angle CDO$ In  $\triangle PBC$  and  $\triangle CDQ$ , we have BC = DQ[BC = AD and AD = DQ (Given)]BP = DC[AB = DC and AB = BP (given)] $\angle PBC = \angle CDQ$ [Proved above] [By SAS congruency]  $\Delta PBC \cong \Delta CDQ$ *.*..  $\Rightarrow \angle BPC = \angle DCQ$  and  $\angle BCP = \angle DQC$  [By C.P.C.T.] Again,  $\angle BCD = \angle PBC$ [since,  $AP \parallel DC$ ] Now,  $\angle BCP + \angle BCD + \angle DCQ$ =  $\angle BCP$  +  $\angle PBC$  +  $\angle BPC$  = 2 right angles *i.e.*,  $\angle PCQ$  is a straight angle. *i.e.*, *P*, *C*, *Q* lie on a straight line.

$$\therefore PQ \parallel AC \text{ and } PQ = \frac{1}{2}AC$$
 ...(ii)

From (i) and (ii),  $PQ \parallel SR$ 

and 
$$PQ = SR = \frac{1}{2}AC$$
 ...(iii)

Similarly, in  $\triangle ABD$ ,

 $\therefore SP = \frac{1}{2}AC$ 

$$SP \parallel BD$$
 and  $SP = \frac{1}{2}BD$ 

[By mid-point theorem]

$$[\therefore AC = BD] \dots (iv)$$

Now in  $\triangle BCD$ ,  $RQ \parallel BD$  and  $RQ = \frac{1}{2}BD$ 

[By mid-point theorem]

$$\therefore RQ = \frac{1}{2}AC \qquad [\because BD = AC] \quad ...(v)$$

From (iv) and (v), 
$$SP = RQ = \frac{1}{2}AC$$
 ...(vi)

From (iii) and (vi), 
$$PQ = SR = SP = RQ$$
 ...(vii)  
 $\therefore$  All four sides are equal.  
Now, in quadrilateral *OERF*,  
 $OE \parallel FR$  and  $OF \parallel ER$   
 $\therefore \ \angle EOF = \angle ERF = 90^{\circ}$  [ $\because AC \perp DB$ ]  
 $\therefore \ \angle QRS = 90^{\circ}$  ...(viii)  
From (vii) and (viii), we get  
 $PORS$  is a square.

 $\odot$ 

**40.** In quadrilateral *ABCD*,  $AC \perp BD$  and AC = BD.

In  $\triangle ADC$ , S and R are the mid-

points of the sides AD and DC respectively.

$$\therefore$$
 SR || AC and SR =  $\frac{1}{2}$ AC ...(i)

[By mid-point theorem] In  $\triangle ABC$ , *P* and *Q* are the midpoints of *AB* and *BC* respectively.

S A

Get More Learning Materials Here : 📕



